今天给各位分享ai德扑教学视频的知识,其中也会对德扑ai软件进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
说的神乎其神,人工智能能用来炒股吗?
人工智能在围棋、象棋、德扑等领域都已经取得了碾压式胜利,这已经是一个不争的事实。事实上AlphaGo这样的AI已经可以用于任何需要理解复杂模式、进行长期计划、并制定决策的领域。人们不禁想问,还有什么是人工智能不能克服的吗?譬如说,变幻莫测的A股?
对于这个问题,持各种观点的都不乏其人。探讨它实可以分为两个部分:1. 股市可以预测吗? 2、 假如可以预测,用机器学习的方法去预测可以吗?
先回答第一个问题:股市的涨跌可以预测吗?
如果将股市的价格变化看做一个随时间变化的序列,Price = Market (t), 我们往往会发现,不管是尝试用N个模型(线性,非线性, 概率)来进行逼近,即使是建立了符合股价变化的这样的模型,并且在有足够多的训练数据的情况下模拟出了股价,但是这些模型最多只能在特定的区间能做一些并不十分精准的预测。
首先是ReinforcementLearning, 这个算法基于马尔可夫性,从一个状态预测下一个状态,但是股价的涨跌具有强烈的马尔可夫性吗?也就是上一时刻的股价与下一个时刻的股价间有必然的联系吗?应该是不太大。这种基于N阶马尔可夫性的系统对于股价的分析很不利。而且假如只使用股价的历史数据进行模型的训练的话,准确度可以说几乎为0。
事实上影响股价的因素不仅仅是历史股价,还有更多的因素,公司的近况,股民对股票的态度,政策的影响等等。所以许多人从这方面进行入手,用人工智能提供的快速计算能力,使用合适的模型,来量化这些因素,例如, (政策X出台, 可能会对股价造成变化y元)。当你的模型将所有的因素全都考虑进来, 那么股价的预测就唾手可得了。股价 = f(政策因素, 公司情况,市场因素, 历史股价,上一年历史股价, 某个股民自杀的影响...)
然而这些因素到底有多少? 它们之间会如何影响,这才是问题的关键。在某些稳定的情况下,我们是可以做大概的预测的,但是有很多时候会不准确,这是因为,你的模型很难把所有的 因素都考虑进来。而且因素与因素间还会产生互相影响的情况下。股价的模型将会变得极其复杂。如下图:
一个因素与一个因素之间的互相影响是很可能被预测出来的,但是假如它们之间产生了相互的影响,这时候整个系统就变得几乎不可预测了。一个因素发生变化,会造成好几个因素的变化,最后这几个因素又会反作用回来使上一个因素直接或间接的发生变化,股价变化一下子就变得难以捉摸起来。一些微小的因素也可以通过这种系统无限的放大,最后给股市造成巨大的影响。
那么是不是预测股价是就是不可能的呢?
事实上人工智能远比我们想象的更强大。例如非常繁复的Bayesian reasoning,包括deep learning/deepreinforcement learning,它们都能表示复杂的hidden variables之间的关系。现在国内外也已经有许多公司在探索将人工智能应用于股市的可能性了。
但是这里所说的将人工智能技术应用于股市,大部分不是说让人工智能代替人去做决策,而是利用人工智能在数据处理和不受主观喜好影响上的优势,在投资决策中扮演一个“AI专家顾问系统”的角色,去辅助人类做出更明智的决策。
股市分析包括基本面分析与技术分析两大块,而人工智能技术在这两方面都能发挥作用:
1
基本面分析
简言之,就是读取各类财经资讯。面对网上海量又纷繁复杂的信息,只依靠人脑已经无法解决问题了。我们知道数据挖掘的三个V,(Volume数据大),(Velocity更新快),(Variety多样),在处理这样的海量数据时,计算机相比人脑具有不可比拟的优势。而深度学习在自然语言处理领域的应用,可以做到在海量的信息中做出自动摘要,提取出精华信息以帮助人类进行决策。
另外,股票价格在很大程度上是由买卖双方的力量对比决定的,是由每个股民对某支股票的情绪而决定的。如果大家都很看好一支股票,那么它就很可能会涨;反之会跌。还有一些特定事件会很明显地影响到股票价格,例如今年美国40年来首次开放原油出口后,国内能源版块不出意料下跌了。这也是为什么这么多股民会刷新闻,看动态来保持敏锐的嗅觉。可以看出,在预测股票这件事上,最重要的是信息,或者说是数据,从中挖掘股民的情绪。而情绪识别已经是人工智能所擅长的技术了。国外已经有很多这方面的研究,也有DataMinr这样的公司专注从社交媒体中提取有价值的金融信号。
如下图,美联社官推被黑(谣言奥巴马被袭击受伤),很快股市出现了大幅度下滑-上升(看13点左右)。虽然这个事件较为特殊,但是设想如果能够在第一时间得到类似消息,实际上就掌握了预测股市的主动权。
可以大胆想象,如果将情感分析与机器学习相结合,抓来海量的数据,去做情感分析,大概找出民众对于对某些股票持乐观还是悲观的情绪,那么至少可以将这一因素纳入模型学习范围中。现存的很多论文都是在情感分析上找寻很多办法去提高准确率。其他一些更简单的做法还有:(1)Google Trend。这个是很简单的办法:谷歌提供的搜索量数据,利用搜索量的变化来预测。(2)利用Twitter Volume(相关Twitter的发帖数量)
2. 技术分析
传统技术分析中的K线分析,什么“大阳星”、“小阴星”、“旭日东升”、“穿头破脚”,其实就是人脑的模式识别。受人脑信息处理能力的限制,这些识别出来的模式有以下缺点:(1)只是单条K线的、只是基于一个模糊的形状,似是而非的、没有确切的数字标准的;(2)基于有限的历史信息的。 而好的深度学习策略,可以突破人脑的限制,比如突破单一K线的限制,从更多的财经信号(其他股票、黄金、外汇等)中寻找规律;或是从一个更长时间段的历史信息中识别出规律。
总之,人工智能将提升我们处理信息的深度、广度。使用基于人工智能技术的“智能投顾”的人,将比不运用或是还在利用“人脑”进行基本面分析与技术分析的人占信息优势,从而也就更可能在股市中盈利。
人工智能在证券投资领域的兴起始于2007年。彼时,第一个纯人工智能的投资基金在美国纽约诞生,此后人工智能在证券投研领域的发展步入快车道; 事实上,在证券投资领域,人工智能早已经不是什么新鲜事,量化对冲基金经理遍布于北京金融街、上海陆家嘴。一般来说,公募基金或大型私募的量化投资部由两部分组成,一部分是投研团队,另一部分是IT团队,投研团队提出需求,IT团队做出算法交易的模块,解决基金经理们的需求。
“正常情况下,我每天的工作流程是早上起床后看一下(机器)生成的股票清单,再看看组合管理系统里每个策略配了多少权重,这些策略加起来的仓位又是多少,然后根据机器所给出的信号(卖出或买入)的各类数据(包括融资融券、投资者入场情况等),判断机器给出的信号有没有明显的错误。”一位量化对冲经理说,如果当天需要交易,他就会生成交易指令,再下单到交易系统,交易系统就会开始自动运作。
在传统的投研中,基金经理及研究员们对财务、交易、市场等数据进行建模,分析其显著特征,利用回归分析等传统机器学习算法作出交易策略,到了人工智能阶段,这些工作便交给了计算机。目前,一些私募基金已开始将量化对冲的三个子领域融入日常交易策略中,尝试获取收益,它们包括机器学习、自然语言处理与知识图谱。例如,作为全球最大的对冲基金,桥水联合(Bridgewater Asspcoates)使用的是一种基于历史数据与统计概率的交易算法,让系统能够自主学习市场变化并适应新的信息。
AlphaGo大胜李世石柯洁,引发全世界关注。投射到投研领域,则是以人工智能量化选股和人类基金经理之间的对决。已经证明的是,人工智能选股在规避市场波动下的非理性选择、回避非系统性风险、获取确定性收益方面等更胜一筹,波动率、最大回撤等指标也更低,表现更稳定。
然而,机器虽然动作比人快,但思维还是没人快。比如面对某个新出台的政策、市场热点,基金经理可以立即以此为主线采取行动。但是机器没那么快。这是人的优势。再譬如,机器一次只能做到一个阶段做一个策略,比如供给侧改革,只能想到煤炭、钢铁、有色金属里的股票,但是对基金经理,他就还能同时做价值投资或动量反转等策略。
整体来说,将整个股票投资决策过程全部交给机器,目前来说还属于少部分金融巨头企业才能做到的事情。
美国硅谷“感知力”技术公司让人工智能程序全程负责股票交易,与其他一些运用人工智能的投资公司不同,该公司交易部门只有两名员工负责监控机器,以确保出现不可控情形时可通过关机终止交易。据报道,“感知力”公司的人工智能投资系统可以通过经验学习实现“自主进化”。公司在全球拥有数千台同时运行的机器,其独特算法创造了数万亿被称为“基因”的虚拟交易者。系统利用历史数据模拟交易,目前可在几分钟内模拟1800天的交易量,经过测试,不好的“基因”被剔除,好的“基因”被保留。通过考验的好“基因”被用于真正的交易。公司员工只需设定好时间、回报率、风险指数等交易指标,剩下的一切都交由机器负责。
公司首席投资官杰夫·霍尔曼透露,目前机器在没有人为干预情况下掌握着大量股票,每天完成数以百计的交易,持仓期限为数日到几周。公司说机器的表现已超越他们设定的内部指标,但没有透露指标的具体内容。
随着人工智能技术的持续进步,人工智能投资成为被学术界和资本看好的领域。英国布里斯托尔大学教授克里斯蒂亚尼尼说,股票投资是十大最有可能被人工智能改变的行业之一。另一方面,也不是所有的投资商都信任机器,英国对冲基金曼氏金融首席科学家莱德福警告说,不应过度信任人工智能投资,该领域还远没有成熟。虽然有各种各样具有迷惑性的承诺,很多投资人的钱却有去无回。
2019 年可以说是「预训练模型」流行起来的一年。自 BERT 引发潮流以来,相关方法的研究不仅获得了 EMNLP 大会最佳论文等奖项,更是在 NLP、甚至图像领域里引领了风潮。
去年也有很多 游戏 AI 取得了超越人类的水平。人工智能不仅已经玩转德州扑克、星际争霸和 Dota2 这样复杂的 游戏 ,还获得了 Nature、Science 等顶级期刊的肯定。
机器之心整理了去年全年 在人工智能、量子计算等领域里最为热门的七项研究 。让我们以时间的顺序来看:
第一个重磅研究出现在 2 月,继发布刷新 11 项 NLP 任务记录的 3 亿参数量语言模型 BERT 之后,谷歌 OpenAI 于 2019 年 2 月再次推出了一种更为强大的模型,而这次的模型参数量达到了 15 亿。这是一种 大型无监督语言模型 ,能够生产连贯的文本段落,在许多语言建模基准上取得了 SOTA 表现。此外,在没有任务特定训练的情况下,该模型能够做到初步的阅读理解、机器翻译、问答和自动摘要。
该模型名为 GPT-2,它是基于 Transformer 的大型语言模型,包含 15 亿参数、在一个 800 万网页数据集上训练而成。训练 GPT-2 有一个简单的目标:给定一个文本中前面的所有单词,预测下一个单词。GPT-2 是对 GPT 模型的直接扩展,在超出 10 倍的数据量上进行训练,参数量也多出了 10 倍。
GPT-2 展示了一系列普适而强大的能力,包括生成当前最佳质量的条件合成文本,其中我们可以将输入馈送到模型并生成非常长的连贯文本。此外,GPT-2 优于在特定领域(如维基百科、新闻或书籍)上训练的其它语言模型,而且还不需要使用这些特定领域的训练数据。在 知识问答、阅读理解、自动摘要和翻译等任务 上,GPT-2 可以从原始文本开始学习,无需特定任务的训练数据。虽然目前这些下游任务还远不能达到当前最优水平,但 GPT-2 表明如果有足够的(未标注)数据和计算力,各种下游任务都可以从无监督技术中获益。
最后,基于大型通用语言模型可能会产生巨大的 社会 影响,也考虑到模型可能会被用于恶意目的,在发布 GPT-2 时,OpenAI 采取了以下策略: 仅发布 GPT-2 的较小版本和示例代码,不发布数据集、训练代码和 GPT-2 模型权重 。
机器学习顶会的最佳论文,总会引起人们的广泛讨论。在今年 6 月于美国加州举办的 ICML 2019(国际机器学习大会)上,由苏黎世联邦理工学院(ETH)、德国马普所、谷歌大脑共同完成的《Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations》获得了其中一篇最佳论文。研究者在论文中提出了一个与此前学界普遍预测相反的观点:对于任意数据,拥有相互独立表征(解耦表征)的无监督学习是不可能的。
论文链接:
在这篇论文中,研究者冷静地审视了该领域的最新进展,并对一些常见的假设提出了质疑。
首先,研究者表示从理论上来看,如果不对模型和数据进行归纳偏置,无监督学习解耦表征基本是不可能的;然后他们在七个不同数据集进行了可复现的大规模实验,并训练了 12000 多个模型,包括一些主流方法和评估指标;最后,实验结果表明,虽然不同的方法强制执行了相应损失「鼓励」的属性,但如果没有监督,似乎无法识别完全解耦的模型。此外,增加的解耦似乎不会导致下游任务学习的样本复杂度的下降。
研究者认为,基于这些理论,机器学习从业者对于超参数的选择是没有经验法则可循的,而在已有大量已训练模型的情况下, 无监督的模型选择仍然是一个很大的挑战 。
去年 6 月,来自德国波恩-莱茵-锡格应用技术大学和谷歌大脑的研究者发表了一篇名为《Weight Agnostic Neural Networks》的论文,进而引爆了机器学习圈。在该论文中,他们提出了一种神经网络架构搜索方法, 这些网络可以在不进行显式权重训练的情况下执行各种任务 。
论文链接:
通常情况下,权重被认为会被训练成 MNIST 中边角、圆弧这类直观特征,而如果论文中的算法可以处理 MNIST,那么它们就不是特征,而是函数序列/组合。对于 AI 可解释性来说,这可能是一个打击。很容易理解,神经网络架构并非「生而平等」,对于特定任务一些网络架构的性能显著优于其他模型。但是相比架构而言,神经网络权重参数的重要性到底有多少?
来自德国波恩-莱茵-锡格应用技术大学和谷歌大脑的一项新研究提出了一种神经网络架构搜索方法,这些网络可以在不进行显式权重训练的情况下执行各种任务。
为了评估这些网络,研究者使用从统一随机分布中采样的单个共享权重参数来连接网络层,并评估期望性能。结果显示,该方法可以找到少量神经网络架构,这些架构可以在没有权重训练的情况下执行多个强化学习任务,或 MNIST 等监督学习任务。
BERT 带来的影响还未平复,CMU 与谷歌大脑 6 月份提出的 XLNet 在 20 个任务上超过了 BERT 的表现,并在 18 个任务上取得了当前最佳效果。
来自卡耐基梅隆大学与谷歌大脑的研究者提出新型预训练语言模型 XLNet,在 SQuAD、GLUE、RACE 等 20 个任务上全面超越 BERT。
作者表示, BERT 这样基于去噪自编码器的预训练模型可以很好地建模双向语境信息,性能优于基于自回归语言模型的预训练方法 。然而,由于需要 mask 一部分输入,BERT 忽略了被 mask 位置之间的依赖关系,因此出现预训练和微调效果的差异(pretrain-finetune discrepancy)。
基于这些优缺点,该研究提出了一种泛化的自回归预训练模型 XLNet。XLNet 可以:1)通过最大化所有可能的因式分解顺序的对数似然,学习双向语境信息;2)用自回归本身的特点克服 BERT 的缺点。此外,XLNet 还融合了当前最优自回归模型 Transformer-XL 的思路。
延伸阅读:
2019 年 7 月,在无限制德州扑克六人对决的比赛中,德扑 AI Pluribus 成功战胜了五名专家级人类玩家。Pluribus 由 Facebook 与卡耐基梅隆大学(CMU)共同开发,实现了前辈 Libratus(冷扑大师)未能完成的任务,该研究已经登上了当期《科学》杂志。
据介绍,Facebook 和卡内基梅隆大学设计的比赛分为两种模式:1 个 AI+5 个人类玩家和 5 个 AI+1 个人类玩家,Pluribus 在这两种模式中都取得了胜利。如果一个筹码值 1 美元,Pluribus 平均每局能赢 5 美元,与 5 个人类玩家对战一小时就能赢 1000 美元。职业扑克玩家认为这些结果是决定性的胜利优势。 这是 AI 首次在玩家人数(或队伍)大于 2 的大型基准 游戏 中击败顶级职业玩家 。
在论文中,Pluribus 整合了一种新的在线搜索算法,可以通过搜索前面的几步而不是只搜索到 游戏 结束来有效地评估其决策。此外,Pluribus 还利用了速度更快的新型 Self-Play 非完美信息 游戏 算法。综上所述,这些改进使得使用极少的处理能力和内存来训练 Pluribus 成为可能。 训练所用的云计算资源总价值还不到 150 美元 。这种高效与最近其他人工智能里程碑项目形成了鲜明对比,后者的训练往往要花费数百万美元的计算资源。
Pluribus 的自我博弈结果被称为蓝图策略。在实际 游戏 中,Pluribus 使用搜索算法提升这一蓝图策略。但是 Pluribus 不会根据从对手身上观察到的倾向调整其策略。
在人工智能之外的量子计算领域,去年也有重要的研究突破。2019 年 9 月,谷歌提交了一篇名为《Quantum supremacy using a programmable superconducting processor》的论文自 NASA 网站传出,研究人员首次在实验中证明了量子计算机对于传统架构计算机的优越性:在世界第一超算 Summit 需要计算 1 万年的实验中,谷歌的量子计算机只用了 3 分 20 秒。因此,谷歌宣称实现「量子优越性」。之后,该论文登上了《自然》杂志 150 周年版的封面。
这一成果源自科学家们不懈的努力。谷歌在量子计算方向上的研究已经过去了 13 年。2006 年,谷歌科学家 Hartmut Neven 就开始 探索 有关量子计算加速机器学习的方法。这项工作推动了 Google AI Quantum 团队的成立。2014 年,John Martinis 和他在加利福尼亚大学圣巴巴拉分校(UCSB)的团队加入了谷歌的工作,开始构建量子计算机。两年后,Sergio Boixo 等人的论文发表,谷歌开始将工作重点放在实现量子计算优越性任务上。
如今,该团队已经构建起世界上第一个超越传统架构超级计算机能力的量子系统,可以进行特定任务的计算。
量子优越性实验是在一个名为 Sycamore 的 54 量子比特的完全可编程处理器上运行的。该处理器包含一个二维网格,网格中的每个量子比特与其他四个相连。量子优越性实验的成功归功于谷歌改进了具有增强并行性的双量子比特门,即使同时操作多个门,也能可靠地实现记录性能。谷歌使用一种新型的控制旋钮来实现这一性能,该旋钮能够关闭相邻量子比特之间的交互。此举大大减少了这种多连通量子比特系统中的误差。此外,通过优化芯片设计来降低串扰,以及开发避免量子比特缺陷的新控制校准,谷歌进一步提升了性能。
虽然 AI 没有打败最强人类玩家 Serral,但其研究的论文仍然登上了 Nature。2019 年 10 月底,DeepMind 有关 AlphaStar 的论文发表在了当期《Nature》杂志上,这是人工智能算法 AlphaStar 的最新研究进展,展示了 AI 在「没有任何 游戏 限制的情况下」已经达到星际争霸Ⅱ人类对战天梯的顶级水平,在 Battle.net 上的排名已超越 99.8%的活跃玩家 。
回顾 AlphaStar 的发展历程,DeepMind 于 2017 年宣布开始研究能进行即时战略 游戏 星际争霸Ⅱ的人工智能——AlphaStar。2018 年 12 月 10 日,AlphaStar 击败 DeepMind 公司里的最强玩家 Dani Yogatama;12 月 12 日,AlphaStar 已经可以 5:0 击败职业玩家 TLO 了(TLO 是虫族玩家,据 游戏 解说们认为,其在 游戏 中的表现大概能有 5000 分水平);又过了一个星期,12 月 19 日,AlphaStar 同样以 5:0 的比分击败了职业玩家 MaNa。至此,AlphaStar 又往前走了一步,达到了主流电子竞技 游戏 顶级水准。
根据《Nature》论文描述,DeepMind 使用通用机器学习技术(包括神经网络、借助于强化学习的自我博弈、多智能体学习和模仿学习)直接从 游戏 数据中学习。AlphaStar 的 游戏 方式令人印象深刻——这个系统非常擅长评估自身的战略地位,并且准确地知道什么时候接近对手、什么时候远离。此外,论文的中心思想是将 游戏 环境中虚构的自我博弈扩展到一组智能体,即「联盟」。
联盟这一概念的核心思想是:仅仅只是为了赢是不够的。相反,实验需要主要的智能体能够打赢所有玩家,而「压榨(exploiter)」智能体的主要目的是帮助核心智能体暴露问题,从而变得更加强大。这不需要这些智能体去提高它们的胜率。通过使用这样的训练方法,整个智能体联盟在一个端到端的、完全自动化的体系中学到了星际争霸Ⅱ中所有的复杂策略。
2019 年在 AI 领域的各个方向上都出现了很多技术突破。新的一年,我们期待更多进展。
此外,机器之心于 2019 年 9 月底推出了自己的新产品 SOTA 模型,读者可以根据自己的需要寻找机器学习对应领域和任务下的 SOTA 论文,平台会提供论文、模型、数据集和 benchmark 的相关信息。
自从人工智能的概念诞生起,人们对于它将会掌控甚至毁灭人类的担忧就一直没有停歇。AlphaGo 在围棋上击败李世石,再加上最近的聊天机器人 Tay 频繁出现暴走和让人发毛的诡异举动,更是加剧了外界的恐慌情绪。作为对人工智能推广最积极的巨头之一,也是 Tay 的开发者微软日前却公开表示:大家实在是想太多了。 微软剑桥研究院总监 Chris Bishop 最近接受采访,他明确表示人类安危绝对不是现在大家需要关注的重点,因为人类对 AI 仍有绝对的控制力。他表示,那些担忧只是一种戏剧性的观点,而且劝告说这种恐惧只会影响到机器人技术的进化。 我所看到的危险是,如果我们花费太多的精力在终结者和天网和人类毁灭上,那就等于是在用一种过于消极,过于情绪化和片面的观点去影响人工智能的发展。最终,我们可能会将这个还在婴儿期的技术扔出温床。 伊隆马斯克和史蒂芬霍金都曾公开表示过自己对于 AI 带来的威胁的担忧,而 Bishop 则完全不同意他们的看法。他认为,即使要担心 AI,那也得是很多很多年之后的事情了。 不过,Bishop 也没有把话说死,他承认 AI 的发展对人类是有一定的负面效果,但那和世界末日没有任何关系。他说 AI 的威胁和终结者无关,而是系统的自我学习会不会出现偏差。另外,AI 数据的归属者问题也是值得注意的。 谈到近来大热的 AlphaGO 击败李世石这件事,Bishop 首先承认它的表现确实令人印象深刻,但要让机器表现出和人类一样的智能,科学家还有很长的路要走:对于人脑来说轻而易举的事情,机器却做不到的还有很多、很多。现在去讨论机器拥有人类的思维能力是一种高度架空的想法,大多数专家都会将这样一个未来放在很多年以后。 Chris 对 AlphaGO 的评价还是很中肯的,即使是在它的缔造者谷歌眼里,这个如今享誉世界的 AI 仍然只属于弱人工智能而已。AlphaGO 基于蒙特卡洛算法,它的取胜无关思维能力,只是单纯的概率选择而已。因为增加了深度学习机制,使得 AlphaGO 可以在学习的过程中过滤掉大部分选项,从而大幅度降低对计算能力的需求。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出
一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。 [1] 2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。
关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(CONSCIOUSNESS)、自我(SELF)、思维(MIND)(包括无意识的思维(UNCONSCIOUS_MIND))等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。
人工智能在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。
ai德扑教学视频的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于德扑ai软件、ai德扑教学视频的信息别忘了在本站进行查找喔。
下一篇:什么叫代码狗(代码狗怎么样)
355536
打开微信,点击右上角"+"号,添加朋友,粘贴微信号,搜索即可!